
Array
CS 251 - Data Structures and 

Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
Static linear data structures
Array

01

3



Array
01

Static linear data structure

4



Array

A0 A1 An-2A2 … An-1

0 1 2 … n-2 n-1

A

An array stores an item per index. An item could be as simple as a single value, or as complex as another data 
structure. Each item is accessed by its index in the array.

The size of an array is the number of items it stores. The capacity of an array is the amount of space reserved 
to store items. For example, an array could be of capacity 10 and size 3 (i.e., there are 3 items in it).

5



Insertion at the 
End

algorithm InsertEnd(A:array, x:item) → array
let n be the size of A
let m be the capacity of A
if n = m then

A ← Resize(A, 2 * m)
end if
A[n] ← x
increase the size of A by 1
return A

end algorithm

algorithm Resize(A:array, m:ℤ+) → array
let B be an array of capacity m
let n be the size of A
for i from 0 to n-1 do

B[i] ← A[i]
end for
set the size of B to n
return B

end algorithm

Remember, size is the number of items, while capacity is the amount of space reserved for storing the items. 6



Insertion at 
Some Index

algorithm InsertAt(A:array, x:item, i:ℤ≥0) → array
let n be the size of A
let m be the capacity of A
if n = m then

A ← Resize(A, 2 * m)
end if
if i < n then

A ← RightShift(A, i)
end if
A[i] ← x
increase the size of A by 1
return A

end algorithm

algorithm RightShift(A:array, i:ℤ≥0) → array
let n be the size of A
for j from n to i+1 by -1 do

A[j] ← A[j-1]
end for
return A

end algorithm

Remember, size is the number of items, while capacity is the amount of space reserved for storing the items. 7



Linear Search

algorithm LinearSearch(A:array, x:item) → ℤ
let n be the size of A
for i from 0 to n-1 do

if A[i] = x then
return i

end if
return -1

end algorithm

8



algorithm RLinearSearch(A:array, x:item, i:ℤ) → ℤ
if i < 0 then

return -1
end if
if A[i] = x then

return i
end if
return RLinearSearch(A, x, i-1)

end algorithm

First call:
let n be the size of A
index ← RLinearSearch(A, x, n-1)

Recursive 
Linear Search

9



Array

Static Data Structure (i.e., fixed capacity)

Array access: 𝐴 𝑖 ∈ Θ(1)

Q: How many operations are required to 
insert an item into an unsorted array?
Keep track of next available cell?: Θ(1)
Sorry, no tracking: Θ(𝑛)

Q: How much space is required to keep 
track of the next available cell?
One variable: Θ(1)

Q: How many operations are required to 
insert an item into a sorted array?
Find location + Right shifting: Θ(𝑛)

A0 A1 An-2A2 … An-1

0 1 2 … n-2 n-1

A

10



Resize an Array

algorithm resize(A:array, m:ℤ+) → array

let n be the size of A
let B be an array of capacity m
copy/move the elements from A to B
return B or let A point to B?
perhaps delete A?

end algorithm

Time? 𝑇 𝑛 ≈ 𝑛 ∈ Θ(𝑛)
Space? 𝑇 𝑛 ≈ 𝑛 ∈ Θ(𝑛)

Usual strategy:
Full? Increase its size (double the current size)
Half empty? reduce its size (half the current size)

11



A0,0 A0,1 A0,m-2A0,2 … A0,m-1

0 1 2 … m-2 m-1

0

A1,0 A1,1 A1,m-2A1,2 … A1,m-1

A2,0 A2,1 A2,m-2A2,2 … A2,m-1

… … …… … …

An-2,0 An-2,1 An-2,m-2An-2,2 … An-2,m-1

1

2

An-1,0 An-1,1 An-1,m-2An-1,2 … An-1,m-1

…

n-2

n-1

2D Array (AKA Grid or Matrix)

Static Data Structure (i.e., fixed size)

Array access: 𝐴 𝑖 𝑗 ∈ Θ 1

Q: How many operations are required to 
traverse a grid?
General case: Θ 𝑛𝑚
Squared matrix: Θ 𝑛2

Q: How much space is required to store 
a grid?
General case: Θ 𝑛𝑚
Squared matrix: Θ 𝑛2

A

12



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

EOF
Do you have any questions?

13

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Array
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Array
	Slide 5: Array
	Slide 6: Insertion at the End
	Slide 7: Insertion at Some Index
	Slide 8: Linear Search
	Slide 9: Recursive Linear Search
	Slide 10: Array
	Slide 11: Resize an Array 
	Slide 12
	Slide 13: EOF

